Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters

Database
Language
Document Type
Year range
1.
Curr Microbiol ; 78(4): 1124-1134, 2021 Apr.
Article in English | MEDLINE | ID: covidwho-1122762

ABSTRACT

Phage display is one of the important and effective molecular biology techniques and has remained indispensable for research community since its discovery in the year 1985. As a large number of nucleotide fragments may be cloned into the phage genome, a phage library may harbour millions or sometimes billions of unique and distinctive displayed peptide ligands. The ligand-receptor interactions forming the basis of phage display have been well utilized in epitope mapping and antigen presentation on the surface of bacteriophages for screening novel vaccine candidates by using affinity selection-based strategy called biopanning. This versatile technique has been modified tremendously over last three decades, leading to generation of different platforms for combinatorial peptide display. The translation of new diagnostic tools thus developed has been used in situations arising due to pathogenic microbes, including bacteria and deadly viruses, such as Zika, Ebola, Hendra, Nipah, Hanta, MERS and SARS. In the current situation of pandemic of Coronavirus disease (COVID-19), a search for neutralizing antibodies is motivating the researchers to find therapeutic candidates against novel SARS-CoV-2. As phage display is an important technique for antibody selection, this review presents a concise summary of the very recent applications of phage display technique with a special reference to progress in diagnostics and therapeutics for coronavirus diseases. Hopefully, this technique can complement studies on host-pathogen interactions and assist novel strategies of drug discovery for coronaviruses.


Subject(s)
Antibodies, Viral/immunology , COVID-19/diagnosis , Cell Surface Display Techniques/methods , SARS-CoV-2/immunology , Antibodies, Neutralizing/immunology , Bacteriophage M13/genetics , Bacteriophage M13/metabolism , Bacteriophage T4/genetics , Bacteriophage T4/metabolism , Bacteriophage T7/genetics , Bacteriophage T7/metabolism , Escherichia coli/genetics , Escherichia coli/virology , Humans
SELECTION OF CITATIONS
SEARCH DETAIL